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Abstract 

The recently introduced algorithm LAESA finds the nearest neighbour prototype in a metric space. The average number 
of distances computed in the algorithm does not depend on the number of prototypes but it shows linear space and time 
complexities. In this paper, a new algorithm (TLAESA) is proposed which has a sublinear time complexity and keeps the 
other features unchanged. 
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1. Introduct ion  

One of the most popular techniques in Pattern 
Recognition is the nearest neighbour search. In this 
method, the sample is classified in the same class as 
the prototype which minimizes a predefined distance 
function with respect to the sample. For instance, 
in handwritten character recognition the set of pro- 
totypes consists of many (classified) examples of 
letters and numerals, the sample is the character to 
be classified and the edit distance has often been 
used in order to estimate the similarity between the 
sample and every prototype. However, computing all 
the distances between the sample and the prototypes 
becomes usually unfeasible, as the distance function 
is often highly time-expensive. 

For three decades, a wide variety of algorithms 
to face this problem has been proposed (Dasarathy, 
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1991). Some methods (Friedman et al., 1977; Rama- 
subramanian and Paliwal, 1990) make use of prop- 
erties which are intrinsic to the representation of the 
data and therefore are not general. However, those 
algorithms using only the intrinsic properties of the 
distance function (reflexivity, symmetry and the tri- 
angular inequality) can always be applied. Examples 
of such methods can be found in (Fukunaga and 
Narendra, 1975; Kalantari and McDonald, 1983; Vi- 
dal, 1986, 1994, Mic6 et al., 1994; Shasha and Wang, 
1990). Depending on their complexity, they can be 
be categorized into two groups: 

1. algorithms (Fukunaga and Narendra, 1975; 
Kalantari and McDonald, 1983), with a sublinear 
time complexity, and 

2. algorithms (Vidal, 1986, 1994; Mic6 et al., 
1994) such that the average number of distance com- 
putations is bounded by a constant which does not 
depend on the size of the prototype set. 

Up to now, no algorithm has been developed which 
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has simultaneously both properties 1 and 2. In this 
work, such an algorithm is proposed. This algorithm 
(TLAESA or Tree LAESA) is based on the LAESA 
(Linear AESA) in (Mic6 et al., 1994) which, in turn, 
is based on thc AESA (Approximating Eliminating 
Search Algorithm) (Vidal, 1986, 1994). In the AESA, 
the expected numbcr of distance computations is 
bounded by a constant, but its time complexity is 
lincar and the space complexity is quadratic. This 
last feature makes AESA impractical for large pro- 
totype sets. In order to overcome this drawback the 
LAESA algorithm was introduced. LAESA has a linear 
spacc complexity whilc keeping the other features 
unchanged. 

Thc algorithm presented herc (TLAESA) is an im- 
provement over the LAESA and reduces its average time 
complcxity to sublincar. The TLAESA algorithm con- 
si sts of two parts: ( I ) prcprocessing and (2) search. In 
the preprocessing algorithm, two structures are built: 
a binary search tree storing all prototypes and a ta- 
blc of distances. The search algorithm is cssentially 
a travcrsal of the binary tree where the table of dis- 
tances is used in order to avoid the exploration of some 
branches of the tree. 

2. The preprocessing 

During preprocessing the algorithm builds two dif- 
ferent structures: the distance table and the prototype 
tree. The distance table M stores the distances be- 
tween every prototype in the set of prototypes P and 
a selected subset of them called base prototypes.  Base 
prototypes will serve as reference points during the 
pruning process and therefore, it is advisable to choose 
them as much separated as possible. One of the best 
strategies for selecting a subset of n base prototypes 
B = { b l  . . . . .  b, )  is proposed in (Mic6 et al., 1992, 
1994). The first one, bl, is randomly selected and then, 
for i =  2,3 . . . . .  n, 

i--I 
bi = argmaxp e ( e -  Bi) E d (p, bk ), ( 1 ) 

k=l 

where Bi = {bl . . . . .  b i - l  }. 
The prototype tree T defines a recursive binary par- 

tition of P. Every node t E T represents a subset St C 
P. If t is a leaf then t contains exactly one prototype. 

Otherwise, St = Stt U Str, where tl and tr are the left 
and right child of t. Every node t stores a represen- 
tative mt E St and the radius r, of St. The  radius is 
defined as follows: 

r, = max d ( p , m , ) .  (2) 
p6S, 

Note that St = {mr}  if t is a leaf and then r, = 0. 
The prototype tree T is (recursively) built as fol- 

lows: the root (p)  represents Sp = P and mp is ran- 
domly selected in P. The right child tr of a node t has 
mtr = mt as representative prototype. However, for the 
left child tl: 

m, t = argmaxpes, d ( p, m, ) . (3) 

Moreover, Sir = {P e St : d ( p ,  mt,)  < d ( p ,  mt,) } 
and Stt= St - Str. The  recursion stops at leaves which 
represent subsets with a single element. There exist 
other methods for building the tree (Duda and Hart, 
1973), but they have larger time complexities. 

3. The search algorithm 

The search algorithm follows a branch and bound 
technique. The algorithm performs a guided traversal 
of the prototype tree pruning those branches which 
cannot contain the nearest neighbour. Distances are 
only evaluated whenever a leaf in T is reached. Ini- 
tially, the nearest base prototype to the sample x is 
taken as candidate for nearest neighbour Pmin. 

In order to reduce the number of distance calcula- 
tions, a lower bound of the distance, g : P x P -~ 
is defined: 

g ( x ,  y) = ~aa~{ld(x, b) - d (  b, Y)I}- (4) 

The recursive search follows a depth-first strategy 
combining root-left-right and root-right-left traver- 
sals depending on the values g ( x ,  mtr) and g ( x ,  mr, ). 

@ d(x,m t ) 

Pm~ (X, 

X 
Pmin ) 

Fig. 1. Geometric interpretation of the bounding condition. 
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a l g o r i t h m  TLAESA 
i n p u t  : T (prototype tree with root p) 

B (subset of  base prototypes) 
M[ b, p]  (distances between base prototypes 

and prototypes) 
x (sample) 

o u t p u t  : pmi,, drain (nearest neighbour and distance) 
begin algorithm 

dmin = oo, gp = 0 
f o r  e v e r y  b 6 B do 

D[b] = d ( x , b )  
i f  D[b] < dmi, t h e n  

pmin = b 
dmin = D [ b ] 

endif 

gp = max(gp, IM[b ,p]  - D[b] l) 
end for 

search(p, gp, Prmn, dr~n ) 
end algorithm 

Fig. 2. Algorithm TLAESA. 

The child with a more promising g-value is first ex- 
plored (if  it is not pruned). Whenever a leaf q is 
reached the distance d (x ,  q) is evaluated and com- 
pared with the smallest distance found so far. If  
d ( x , q )  < d(x ,pmin) ,  then pmin is updated with q. 

Functions g(x ,  m,) can be calculated without eval- 
uating any distance during the search process as: 

• distances of type d ( b , m , )  are computed during 
preprocessing (when base prototypes and class repre- 
sentatives are selected) and stored in M, and 

• distances of  type d ( x ,  b) do not depend on the 
structure of the partition and can be computed and 
stored as a vector D before the search in T starts. 

We describe now how the pruning works. Let x 
be the sample, t a node in T and pmin the candidate 
for nearest neighbour. It is not difficult to prove (see 
Fig. 1 ) 

d (x ,  Pmin) + rt < d ( x ,  mt) 

d ( x , p )  > d(x,pmin) Vp 6 S,. (5) 

algorithm search 
input: t 6 T (node) 

gt (value for g( x, t) ) 
o u t p u t  : Prnin, dmin (nearest neighbour and distance) 
begin algorithm 

if is_leaf(t) then 

if gt < d~. then 
d = d ( x ,  m,) 
if d < dmin then 

Pmin = mt 
dmin = d 

endif 
endif 

else 
tr = right_child(t) 
tl = left_child(t) 

gt = g(x ,  tt) 
if gl < gt then 

if drain + rl > gl then 
Search(  tl, gt, Pmin, dmin) 

endif 

if drain + rr > gr then 

s e a r c h (  tr, gt, Pnfin, dnfin ) 
endif 

else 

if d.~n + rr > gr then 

s e a r c h (  tr, gt, pmin, dmin ) 
endif 

if dr~n q- rl > gl then 

search( tl, gl, P.~n, drmn ) 
endif 

endif 

endif 
end algorithm 

Fig. 3. The search procedure. 

replaced with 

d (x ,  pnfin) + rt < g(x ,  mt) .  (6) 

A schematic representation of the algorithm is plotted 
in Figs. 2 and 3. 

In such case, no prototype in St is closer to x than Pmin 
and the x nearest neighbour cannot be in St. Therefore, 
the branch t can be pruned. 

Due to the triangle inequality, g ( x , y )  <~ d ( x , y )  
for all x, y E P and the condition in Eq. (5) can be 

4. Experiments 

The behaviour of the algorithm was checked by 
means of experiments on artificial data. Prototype sets 
consisted of random points in the d-dimensional hy- 
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Fig. 4. Average number of distance computations in TLAESA as a function of the number n of base prototypes for different dimensions 
( IP I  = 2 'g ) .  

percube generated according to a uniform probabil- 
ity distribution. All experiments were repeated with 
ten different prototype sets and 1000 different sam- 
ples. Therefore, results were obtained as an average 
over 10000 experiments. Deviations were always be- 
low one per cent. 

A preliminary set of experiments was performed in 
order to fit the only parameter in the algorithm: the 
number of base prototypes n. The results in Fig. 4 
show that there is an optimal value of n which makes 
the average number of distance calculations minimal. 
When n is low, adding more base prototypes consider- 
ably enlarges the effect of pruning, and the total num- 
ber of distance evaluations becomes reduced. How- 
ever, once n is large enough, a linear increase in the 
number of distance calculations dominates. This is due 
to the fact that all distances from the sample to the 
base prototypes are evaluated in the algorithm (and 
stored in vector D). Fig. 4 also shows that the optimal 
n depends on the dimensionality d of the space. The 
experiments in (Mic6, 1996) showed that this optimal 
value does not depend on the number of prototypes. 

Another set of experiments studied how the average 
number of distance calculations depended on the num- 
ber of prototypes. The parameter n was always set to 

its optimal value for the dimensionality of the exper- 
iment. As shown in Fig. 5, this dependence is rather 
flat. Indeed, every curve is bounded by a constant. 
This is checked in Fig. 6, where the average number 
of distance calculations in TLAESA and in the kd-tree 
algorithm (Friedman et al., 1977) are compared. This 
is not a general algorithm, as it needs the coordinates 
of the prototypes, but we will use it for comparison 
purposes. The number of distance calculations in the 
kd-tree algorithm is bounded by a constant which de- 
pends on the dimensionality of the space. The experi- 
ments plotted in Fig. 6 show a smaller number of dis- 
tance calculations in our algorithm, indicating (com- 
pared to the kd-tree algorihtm) that an upper bound 
should also apply to our case. 

Finally, comparison of TLAESA with AESA and 
LAESA is shown in Fig. 7. Even if AESA computes 
fewer distances, it can only be used with small 
sets (below a few thousands prototypes), due to its 
quadratic space complexity. 

On the other hand, the pruning in TLAESA is not 
so effective as in LAESA but the time complexity is 
smaller in TLAESA. The choice between both algo- 
rithms depends on the number of prototypes and the 
cost of the distance computations. Small prototype 
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sets or very expensive distances will make LAESA 
preferable, but as the prototype set becomes larger, the 
TLAESA will outperform LAESA. This can be seen in 
Figs. 8 and 9, where the applicability range is studied. 
The experiments count how many steps the algorithm 
needed in order to find the nearest neighbour. Every 
single high-level sentence in the program is counted 
as one step every time it is executed. In addition, ev- 
ery time the distance function is called the number of 
steps is increased by a large fixed number ( 1000 and 
10000, respectively) in order to simulate realistic ex- 
perimental conditions. Figs. 8 and 9 study the influ- 
ence of two characteristics of the distance functions 
for real data: (1)  computational cost and (2) geo- 
metric properties that can be characterized for the di- 
mensionality. In the following experiments these two 
properties are studied independently. The figures show 
that for low cost distances (as is the case for the Eu- 
clidean distance with d = 4) ,  TLAESA shows a better 
behaviour than LAESA. However, when the distance 
is expensive, TLAESA becomes better at larger proto- 
type sets. For instance, this happens for prototype sets 
larger than 4000 prototypes with d = 8. 

5. Conclusions 

Although AESA and LAESA are algorithms that com- 
pute very few distances in order to find nearest neigh- 
bours, their linear time complexity is a serious bottle- 
neck when the number of  prototypes becomes large. 
The algorithm presented here (TLAESA) makes only 
use of the metric properties of the distance in order 
to avoid the calculation of some distances. It works in 
sublinear time, the number of distance computations 
is bounded by a constant and has a linear space com- 
plexity. Although this algorithm computes, in average, 
more distances than AESA and LAESA, its computing 
time is lower when the number of prototypes increases. 
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