
ELSEVIER Pattern RecognidonLette~ 17 (1996) 731-739

Pattern, Recognition
Le~ers

A fast branch & bound nearest neighbour classifier
in metric spaces

Lui sa M i c 6 *, Jose Onc ina , Rafae l C. Ca r r a sco
Departamento de Lenguajes y Sistemas InformAticos, Ap. Correos 99, Universidad de Alicante, E-03080 Alicante, Spain

Received 13 October 1995; revised 1 February 1996

Abstract

The recently introduced algorithm LAESA finds the nearest neighbour prototype in a metric space. The average number
of distances computed in the algorithm does not depend on the number of prototypes but it shows linear space and time
complexities. In this paper, a new algorithm (TLAESA) is proposed which has a sublinear time complexity and keeps the
other features unchanged.

Keywords: Metric spaces; Nearest-neighbour; Pattern recognition

1. Introduct ion

One of the most popular techniques in Pattern
Recognition is the nearest neighbour search. In this
method, the sample is classified in the same class as
the prototype which minimizes a predefined distance
function with respect to the sample. For instance,
in handwritten character recognition the set of pro-
totypes consists of many (classified) examples of
letters and numerals, the sample is the character to
be classified and the edit distance has often been
used in order to estimate the similarity between the
sample and every prototype. However, computing all
the distances between the sample and the prototypes
becomes usually unfeasible, as the distance function
is often highly time-expensive.

For three decades, a wide variety of algorithms
to face this problem has been proposed (Dasarathy,

* Work partially supported under grant TIC93-0633-C02-02.
* Corresponding author. E-mail: mico@dtic.ua.es.

1991). Some methods (Friedman et al., 1977; Rama-
subramanian and Paliwal, 1990) make use of prop-
erties which are intrinsic to the representation of the
data and therefore are not general. However, those
algorithms using only the intrinsic properties of the
distance function (reflexivity, symmetry and the tri-
angular inequality) can always be applied. Examples
of such methods can be found in (Fukunaga and
Narendra, 1975; Kalantari and McDonald, 1983; Vi-
dal, 1986, 1994, Mic6 et al., 1994; Shasha and Wang,
1990). Depending on their complexity, they can be
be categorized into two groups:

1. algorithms (Fukunaga and Narendra, 1975;
Kalantari and McDonald, 1983), with a sublinear
time complexity, and

2. algorithms (Vidal, 1986, 1994; Mic6 et al.,
1994) such that the average number of distance com-
putations is bounded by a constant which does not
depend on the size of the prototype set.

Up to now, no algorithm has been developed which

0167-8655/96/$12.00 (~) 1996 Elsevier Science B.V. All fights reserved
PII S 0 1 6 7 - 8 6 5 5 (9 6) 0 0 0 3 2 - 3

732 L. Micd et aLIPattern Recognition Letters 17 (1996) 731-739

has simultaneously both properties 1 and 2. In this
work, such an algorithm is proposed. This algorithm
(TLAESA or Tree LAESA) is based on the LAESA
(Linear AESA) in (Mic6 et al., 1994) which, in turn,
is based on thc AESA (Approximating Eliminating
Search Algorithm) (Vidal, 1986, 1994). In the AESA,
the expected numbcr of distance computations is
bounded by a constant, but its time complexity is
lincar and the space complexity is quadratic. This
last feature makes AESA impractical for large pro-
totype sets. In order to overcome this drawback the
LAESA algorithm was introduced. LAESA has a linear
spacc complexity whilc keeping the other features
unchanged.

Thc algorithm presented herc (TLAESA) is an im-
provement over the LAESA and reduces its average time
complcxity to sublincar. The TLAESA algorithm con-
si sts of two parts: (I) prcprocessing and (2) search. In
the preprocessing algorithm, two structures are built:
a binary search tree storing all prototypes and a ta-
blc of distances. The search algorithm is cssentially
a travcrsal of the binary tree where the table of dis-
tances is used in order to avoid the exploration of some
branches of the tree.

2. The preprocessing

During preprocessing the algorithm builds two dif-
ferent structures: the distance table and the prototype
tree. The distance table M stores the distances be-
tween every prototype in the set of prototypes P and
a selected subset of them called base prototypes. Base
prototypes will serve as reference points during the
pruning process and therefore, it is advisable to choose
them as much separated as possible. One of the best
strategies for selecting a subset of n base prototypes
B = { b l b,) is proposed in (Mic6 et al., 1992,
1994). The first one, bl, is randomly selected and then,
for i = 2,3 n,

i--I
bi = argmaxp e (e - Bi) E d (p, bk), (1)

k=l

where Bi = {bl b i - l }.
The prototype tree T defines a recursive binary par-

tition of P. Every node t E T represents a subset St C
P. If t is a leaf then t contains exactly one prototype.

Otherwise, St = Stt U Str, where tl and tr are the left
and right child of t. Every node t stores a represen-
tative mt E St and the radius r, of St. The radius is
defined as follows:

r, = max d (p , m ,) . (2)
p6S,

Note that St = {mr} if t is a leaf and then r, = 0.
The prototype tree T is (recursively) built as fol-

lows: the root (p) represents Sp = P and mp is ran-
domly selected in P. The right child tr of a node t has
mtr = mt as representative prototype. However, for the
left child tl:

m, t = argmaxpes, d (p, m,) . (3)

Moreover, Sir = {P e St : d (p , mt,) < d (p , mt,) }
and Stt= St - Str. The recursion stops at leaves which
represent subsets with a single element. There exist
other methods for building the tree (Duda and Hart,
1973), but they have larger time complexities.

3. The search algorithm

The search algorithm follows a branch and bound
technique. The algorithm performs a guided traversal
of the prototype tree pruning those branches which
cannot contain the nearest neighbour. Distances are
only evaluated whenever a leaf in T is reached. Ini-
tially, the nearest base prototype to the sample x is
taken as candidate for nearest neighbour Pmin.

In order to reduce the number of distance calcula-
tions, a lower bound of the distance, g : P x P -~
is defined:

g (x , y) = ~aa~{ld(x, b) - d (b, Y)I}- (4)

The recursive search follows a depth-first strategy
combining root-left-right and root-right-left traver-
sals depending on the values g (x , mtr) and g (x , mr,).

@ d(x,m t)

Pm~ (X,

X
Pmin)

Fig. 1. Geometric interpretation of the bounding condition.

L. Mic6 et aL/Pattern Recognition Letters 17 (1996) 731-739 733

a l g o r i t h m TLAESA
i n p u t : T (prototype tree with root p)

B (subset of base prototypes)
M[b, p] (distances between base prototypes

and prototypes)
x (sample)

o u t p u t : pmi,, drain (nearest neighbour and distance)
begin algorithm

dmin = oo, gp = 0
f o r e v e r y b 6 B do

D[b] = d (x , b)
i f D[b] < dmi, t h e n

pmin = b
dmin = D [b]

endif

gp = max(gp, IM[b ,p] - D[b] l)
end for

search(p, gp, Prmn, dr~n)
end algorithm

Fig. 2. Algorithm TLAESA.

The child with a more promising g-value is first ex-
plored (if it is not pruned). Whenever a leaf q is
reached the distance d (x , q) is evaluated and com-
pared with the smallest distance found so far. If
d (x , q) < d(x ,pmin) , then pmin is updated with q.

Functions g(x , m,) can be calculated without eval-
uating any distance during the search process as:

• distances of type d (b , m ,) are computed during
preprocessing (when base prototypes and class repre-
sentatives are selected) and stored in M, and

• distances of type d (x , b) do not depend on the
structure of the partition and can be computed and
stored as a vector D before the search in T starts.

We describe now how the pruning works. Let x
be the sample, t a node in T and pmin the candidate
for nearest neighbour. It is not difficult to prove (see
Fig. 1)

d (x , Pmin) + rt < d (x , mt)

d (x , p) > d(x,pmin) Vp 6 S,. (5)

algorithm search
input: t 6 T (node)

gt (value for g(x, t))
o u t p u t : Prnin, dmin (nearest neighbour and distance)
begin algorithm

if is_leaf(t) then

if gt < d~. then
d = d (x , m,)
if d < dmin then

Pmin = mt
dmin = d

endif
endif

else
tr = right_child(t)
tl = left_child(t)

gt = g(x , tt)
if gl < gt then

if drain + rl > gl then
Search(tl, gt, Pmin, dmin)

endif

if drain + rr > gr then

s e a r c h (tr, gt, Pnfin, dnfin)
endif

else

if d.~n + rr > gr then

s e a r c h (tr, gt, pmin, dmin)
endif

if dr~n q- rl > gl then

search(tl, gl, P.~n, drmn)
endif

endif

endif
end algorithm

Fig. 3. The search procedure.

replaced with

d (x , pnfin) + rt < g(x , mt) . (6)

A schematic representation of the algorithm is plotted
in Figs. 2 and 3.

In such case, no prototype in St is closer to x than Pmin
and the x nearest neighbour cannot be in St. Therefore,
the branch t can be pruned.

Due to the triangle inequality, g (x , y) <~ d (x , y)
for all x, y E P and the condition in Eq. (5) can be

4. Experiments

The behaviour of the algorithm was checked by
means of experiments on artificial data. Prototype sets
consisted of random points in the d-dimensional hy-

734 L. Micd et al./Pattern Recognition Letters 17 (1996) 731-739

o

c~

Eo (J

c

E

160

140

120

100

8O

60

40

20

0
0

L i i r

dim 8

I I I / I

10 20 30 40 50
number of base prototypes

60

Fig. 4. Average number of distance computations in TLAESA as a function of the number n of base prototypes for different dimensions
(IP I = 2 'g) .

percube generated according to a uniform probabil-
ity distribution. All experiments were repeated with
ten different prototype sets and 1000 different sam-
ples. Therefore, results were obtained as an average
over 10000 experiments. Deviations were always be-
low one per cent.

A preliminary set of experiments was performed in
order to fit the only parameter in the algorithm: the
number of base prototypes n. The results in Fig. 4
show that there is an optimal value of n which makes
the average number of distance calculations minimal.
When n is low, adding more base prototypes consider-
ably enlarges the effect of pruning, and the total num-
ber of distance evaluations becomes reduced. How-
ever, once n is large enough, a linear increase in the
number of distance calculations dominates. This is due
to the fact that all distances from the sample to the
base prototypes are evaluated in the algorithm (and
stored in vector D). Fig. 4 also shows that the optimal
n depends on the dimensionality d of the space. The
experiments in (Mic6, 1996) showed that this optimal
value does not depend on the number of prototypes.

Another set of experiments studied how the average
number of distance calculations depended on the num-
ber of prototypes. The parameter n was always set to

its optimal value for the dimensionality of the exper-
iment. As shown in Fig. 5, this dependence is rather
flat. Indeed, every curve is bounded by a constant.
This is checked in Fig. 6, where the average number
of distance calculations in TLAESA and in the kd-tree
algorithm (Friedman et al., 1977) are compared. This
is not a general algorithm, as it needs the coordinates
of the prototypes, but we will use it for comparison
purposes. The number of distance calculations in the
kd-tree algorithm is bounded by a constant which de-
pends on the dimensionality of the space. The experi-
ments plotted in Fig. 6 show a smaller number of dis-
tance calculations in our algorithm, indicating (com-
pared to the kd-tree algorihtm) that an upper bound
should also apply to our case.

Finally, comparison of TLAESA with AESA and
LAESA is shown in Fig. 7. Even if AESA computes
fewer distances, it can only be used with small
sets (below a few thousands prototypes), due to its
quadratic space complexity.

On the other hand, the pruning in TLAESA is not
so effective as in LAESA but the time complexity is
smaller in TLAESA. The choice between both algo-
rithms depends on the number of prototypes and the
cost of the distance computations. Small prototype

L. Mic6 et aL/Pattern Recognition Letters 17 (1996) 731-739 735

o

'5

8

c

"6
$

8,

100

80

60

40

20

i i i i

. dim 8

/ I / /

/ / / "
/ -

f / /
/

dim 4

0 I I I /

2000 4000 6000 8000
number of prototypes

Fig. 5. Average number of distance computations in TLA~.SA as a function of the number of prototypes for d = 4 and d = 8.

1 , , ,

ILl
W

0.8

ILl

• ,= 0.6

e,
0.4 ' ,

"5

c ,~ 0.2

I1:

dim 4

Fig. 6. Relation between the number of distances calculated by TLkESA and the number of distances calculated by the kd-tree algorithm.

dim 8

I I I
2000 4000 6000

number of prototypes
8000

\

736 L. Mic6 et al./Pattern Recognition Letters 17 (1996) 731-739

(a)
25

dimension 4
i i i

O

E
8

re

~5
"5

re

20

15

10

.............. ..---'"' ... TLAESA

.

AESA

2000 4000 6 ooo 8000
numberofprototypes

(b)
100

90

.£ 80

c

LAESA
6O

`5

~ ~o
g

~ 4o

30 AESA

20, B

dimension 8

................ TLAESA

2000
i 0 i

4000 60 0 8000
number of prototypes

Fig. 7. Comparison of the results with TLAESA in Fig. 5 with the corresponding results using AE.qA and LAESA.

L. Mic6 et aL/Pattern Recognition Letters 17 (1996) 731-739 737

(a)

E

o

4e+05 t'-

3e+05

2e+05

le+05

0e+00

dimension 4
E

LAESA / ' " f / ' "

j l
/17I

I
7" I AESA

/.
j z ~I

j f 1 ~

TLAESA

) I ~ I , t
2000 4000 6000 8000

numberofpmtotypes

(b)
1.4e+06

1,2e+06

1.0e+06

~ 8 . 0 e + 0 5

E

~6.0e+06

4.0e+05

2,0e+05

0.0e+O0

, i

dimension 8
I i - -

L A E S A . . / '
./J

f l
J /"

j ~ J f

Fig, 8. Overhead for th¢ AESA, L/~SA and TLAF_,SA, for a fixed number of steps of the distance equal to 1OOO.

f Jr
j r" I 11

. / " AESA

,]
2000 4000 6000 8000

number of prototypes

738 L. Mic6 et at.tPattern Recognition Ijztters 17 (1996) 731-739

(a) 7e+05

6e+05

5e+05

4e+05

E
m

~ 3e+05

2e+05

le+05

0e+00

dimension 4

LAESA ..-"""
z j

j -
j ~

f f ~lZ

. / f J j

T_...s,,

I 1 I , I

2000 4000 6000 8000
number of prototypes

(b)2.0e+06 dimension 8

1.8e+06 LAESA ~,-"

f J "
1 "

1.6e+06

1.4e+06 " ' " TLAESA
j . . l

'1.2e+06 z ' " "

~ 1.0e+06
Q.

8.0e+05 _+- AESA

6.0e+05 , , "

4.0e+05

2.0e+05 ~ , I t t
2000 4000 6000 8000

number of prototypes

Fig. 9. Overhead for the AESA, LAESA and TLAESA algorithms in dimension 4 and 8, when the computation of the distance has a fixed
value of 10000.

L. Mic6 et aL/Pattern Recognition Letters 17 (1996) 731-739 739

sets or very expensive distances will make LAESA
preferable, but as the prototype set becomes larger, the
TLAESA will outperform LAESA. This can be seen in
Figs. 8 and 9, where the applicability range is studied.
The experiments count how many steps the algorithm
needed in order to find the nearest neighbour. Every
single high-level sentence in the program is counted
as one step every time it is executed. In addition, ev-
ery time the distance function is called the number of
steps is increased by a large fixed number (1000 and
10000, respectively) in order to simulate realistic ex-
perimental conditions. Figs. 8 and 9 study the influ-
ence of two characteristics of the distance functions
for real data: (1) computational cost and (2) geo-
metric properties that can be characterized for the di-
mensionality. In the following experiments these two
properties are studied independently. The figures show
that for low cost distances (as is the case for the Eu-
clidean distance with d = 4) , TLAESA shows a better
behaviour than LAESA. However, when the distance
is expensive, TLAESA becomes better at larger proto-
type sets. For instance, this happens for prototype sets
larger than 4000 prototypes with d = 8.

5. Conclusions

Although AESA and LAESA are algorithms that com-
pute very few distances in order to find nearest neigh-
bours, their linear time complexity is a serious bottle-
neck when the number of prototypes becomes large.
The algorithm presented here (TLAESA) makes only
use of the metric properties of the distance in order
to avoid the calculation of some distances. It works in
sublinear time, the number of distance computations
is bounded by a constant and has a linear space com-
plexity. Although this algorithm computes, in average,
more distances than AESA and LAESA, its computing
time is lower when the number of prototypes increases.

References

Dasarathy, B. (1991). Nearest Neighbour (NN) norms: NN Pattern
Classification Techniques. IEEE Computer Society Press, Silver
Spring, MD.

Duda, R. and P. Hart (1973). Pattern Classification and Scene
Analysis. Wiley, New York.

Friedman, J., J. Bentley and R.A. Finkel (1977). An algorithm for
finding best matches in logarithmic expected time. ACM Trans.
Math. Software 3, 209-226.

Fukunaga, K. and M. Narendra (1975). A branch and bound
algorithm for computing k-nearest neighbors. IEEE Trans.
Comput. 24, 750-753.

Kalantari, 1. and G. McDonald (1983). A data structure and an
algorithm for the nearest point problem. IEEE Trans. Software
Engrg. 9, 631-634.

Mic6, L., J. Oncina and E. Vidal (1992). An algorithm for finding
nearest neighbours in constant average time with a linear space
complexity. Proc. l l th ICPR, The Hague, Vol. II, 557-560.

Micr, L., J. Oncina and E. Vidal (1994). A new version of
the nearest-neighbour approximating and eliminating search
algorithm (AESA) with linear preprocessing-time and memory
requirements. Pattern Recognition Lett. 15, 9-17.

Mic6, L. (1996). Nearest neighbour search algorithms in metric
spaces (in Spanish). Ph.D. dissertation, Universidad Politrcnica
de Valencia, 1996.

Ramasubramanian, V. and K. Paliwal (1990). An efficient
approximation-elimination algorithm for fast nearest-neighbour
search based on a spherical distance coordinate formulation.
In: L. Torres et al., Eds., Signal Processing V" Theories and
Applications. Proc. EUSIPCO-90. North-Holland, Amsterdam,
1323-1326.

Shasha, D. and T. Wang (1990). New techniques for best-match
retrieval. ACM Trans. Inform. Syst. 8, 140-158.

Vidal, E. (1986). An algorithm for finding nearest neighbours
in (approximately) constant average time complexity. Pattern
Recognition Lett. 4, 145-157.

Vidal, E. (1994). New formulation and improvements of
the nearest-neigbour Approximating and Eliminating Search
Algorithm (AESA). Pattern Recognition Lett. 15, I-7.

